

PERTH MODERN SCHOOL Exceptional schooling. Exceptional students. Independent Public School

Mathematics Specialist

Year	11
------	----

Student name:	Teacher name:	
Date: Friday 21 st Feb	oruary 2020	
Task type:	Response	
Time allowed:	Response 45 mins 7	
Number of questions:	7	
Materials required:	Calculator with CAS capability (to be provided by the student)	
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters	
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations	
Marks available:	45 marks	
Task weighting:	10%	
Formula sheet provided	: Yes	

Note: All part questions worth more than 2 marks require working to obtain full marks.

Perur ivioderii School

Question 1 (2.3.2)

(a) Give a decimal representation of $\frac{2}{7}$

(3 marks)

(1 mark)

$$\begin{array}{c} 0, \ 2 \ 8 \ 5 \ 7 \ 1 \ 4 \ 2 \\ 7 \ \boxed{2.^20^60^40^50^10^30^20} \end{array}$$

$$\frac{2}{7} = 0.285714$$
 V

(b) Write $0.3\dot{2}5\dot{4}$ in the form $\frac{m}{n}$ where *m* and *n* are integers and n≠0. An answer without working will not be awarded any marks (2 marks)

x = 0.3254	
10 26 = 3.254	
10000x = 3254.254	
9990x = 325	
$x = \frac{3251}{9990}$	answer only O marks

Question 2	(2.3.1)	(3 marks)

Answer with True or False;

- (a) The product of two rational numbers can be irrational (1 marks) $\int a \int e \sqrt{}$
- (c) The quotient of two irrational numbers is also irrational (if defined) (1 marks) $\int \sigma |_{se} \sqrt{consider} \frac{3\sqrt{2}}{\sqrt{2}}$

Perui Moderni Schoor

Question 3 (2.3.1)

(a) Assume that a is even and b is odd. Prove that ab^2 is even.

(8 marks)

(b) Show that $u^2 + t^2 \ge -2ut$ given that u and t are real numbers. (3 marks) $u^2 + t^2 \ge -2ut \implies u^2 + t^2 + 2ut \ge 0$ we have $u^2 + t^2 + 2ut \checkmark$

$$= (u + t)^{2}$$

$$= (u + t)^{2}$$

$$= 0$$

$$= since we are squaring a real number$$

. u²+t² ≥ -2ut

Mathematics Department

(c) Prove that
$$\frac{w}{w+3} > \frac{w-3}{w}$$
 given that $w \in \{1, 2, 3...\}$ (4 marks)

$$\frac{w}{w+3} > \frac{w-3}{w} \implies \frac{w}{w+3} - \frac{w-3}{w} > 0$$

$$w \in have \qquad \frac{w}{w+3} - \frac{w-3}{w}$$

$$= \frac{w^2}{w(w+3)} - \frac{(w-3)(w+3)}{w(w+3)}$$

$$= \frac{w^2 - (w^2 - q)}{w(w+3)}$$

$$= \frac{q}{w(w+3)} \in always \text{ positive since}$$

$$w \text{ is a natural number}$$
Cuestion 4 (1.3.1) (3 marks)
(a) Negate the statement "The sum of each pair of prime numbers is even" (1 mark)
Some pair of primes does not have an even sum
(b) Negate the statement "12 is divisible by 2 or 5". (1 mark)
12 is not divisible by 2 and 12 is not divisible by 5
(c) Write down the contrapositive of "If 2" ≥ 2", then $x \ge y^{*}$ (1 mark)
if $x < y$ then $2^{\infty} < 2^{\sqrt{3}}$

(6 marks)

Question 5 (1.3.1, 2.3.1)

Write down the contrapositive and prove the following statements

(a) If
$$n^2 - 10n + 9$$
 is even, then n is odd.
Contrapositive: If n is even then $n^2 - 10n + 9$ is odd
Proof: Let $n = 2k$ for some $k \in \mathbb{Z}$
thus $n^2 - 10n + 9 = (2k)^2 - 10(2k) + 9$
 $= 4k^2 - 20k + 9$
 $= 4k^2 - 20k + 8 + 1$
 $= 2(2k^2 - 10k + 4) + 1V$
which is odd
if $n^2 - 10n + 9$ is even, then n is odd
(b) If $2x + 3y \ge 12$, then $x \ge 3$ or $y \ge 2$
(3 marks)
Contrapositive: If $x \le 3$ and $y \le 2$ then
 $2x + 3y \le 12$
Proof: If $x \le 3$ and $y \le 2$ then
 $2x + 3y \le 2(3) + 3(2)$
 $\le 6 + 6$
 $\le 12^2$ as required
i. If $2x + 3y \ge 12$ then $x \ge 3$ or $y \ge 2$

Mathematics Department

Question 6 (3.1.1, 3.1.4, 3.1.9)

Use proof by contradiction for the following questions;

(a) Suppose that
$$5^{x} = 8$$
. Prove that x is irrational. (4 marks)
Suppose x is rational
we can write $x = \frac{m}{n}$, $n \neq 0$ and $m, n \in \mathbb{N}$
thus $5^{x} = 8 \implies 5^{\frac{m}{n}} = 8$
 $(5^{\frac{m}{n}})^{n} = 8^{n}$
 $5^{m} = 8^{n}$
 $5^{m} = 2^{3n}$
LHs is odd RHs is even
The above gives a contradiction $\therefore x$ is not rational

(b) Suppose that $m^2 - n^2 - 4 = 0$. Prove that *m* and *n* cannot both be natural numbers (5 marks)

Suppose both m and n are natural numbers v
we have
$$m^2 - n^2 - 4 = 0$$

 $\implies m^2 - n^2 = 4$
 $(m+n)(m-n) = 4$
The only factors of 4 are 1,2 and 4.
Since $(m+n) > (m-n)$
 $n + n = 4$ and $m - n = 1$ v
 $2m = 5$
 $m = \frac{5}{2}$ (and $n = \frac{3}{2}$) both not whole
This is a contradiction $\implies m\& n \text{ are not both natural}$
or numbers.

Pertil Modern School

(9 marks)

Question 7 (3.1.1, 3.1.4, 3.1.9)

(a) Write the contrapositive of "if m³ is divisible by 3 then m is divisible by 3
If m is not divisible by 3 then m³ is not
divisible by 3
(b) Prove the contrapositive above (hint: you will need to consider cases) (4 marks)
If m is not divisible by 3 then
either m = 3k + 1 V m = 3k and
or m = 3k + 2 V m = 3k + 3 are
divisible by 3
for case 1, m = 3k + 1

$$\implies m^3 = (3k + 1)^3$$
 CAS expand
 $= 27k^3 + 27k^2 + 9k + 1$
 $= 3(9k^3 + 9k^2 + 3k) + 1$
which is not divisible by 3
for case 2, m = 3k + 2
m³ = (3k + 2)³ CAS expand
 $= 27k^3 + 24k^2 + 36k + 8$
 $= 3(9k^3 + 8k^2 + 12k + 2) + 2$
which is not divisible by 3
Therefore if m³ is divisible by 3

(c) Hence, prove by contradiction that
$$\sqrt{3}$$
 is irrational
Suppose $\sqrt[3]{3}$ is irrational
So $\sqrt[3]{3} = \frac{f}{g}$ where $p, q \in \mathbb{Z}$ and $q^{\pm 0}$
Assume p and q have no common
factors
Thus $(\sqrt[3]{3})^3 = (\frac{f}{q})^3$
 $\Rightarrow p^3 = 3q^3 - 0$
 $\Rightarrow p^3 = 3q^3 - 0$
 $\Rightarrow p^2$ is divisible by 3
 $\Rightarrow p$ is divisible by 3
 $\Rightarrow p$ is divisible by 3 (proven
 $above$)
 $\Rightarrow p = 3k$ for some $k \in \mathbb{N}$
 $\Rightarrow (3k)^3 = 3q^3$
 $\Rightarrow q^3 = qk^3$
 $\Rightarrow q^3 = 3k^3$
 $\Rightarrow q^3 = 3k^3$
 $\Rightarrow q^3 = is$ divisible by 3
 $\Rightarrow q^3 = is$ di